Gorenstein Projective Precovers

We prove that the class of Gorenstein projective modules is special precovering over any left GF-closed ring such that every Gorenstein projective module is Gorenstein flat and every Gorenstein flat module has finite Gorenstein projective dimension. This class of rings includes (strictly) Gorenstein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2017-02, Vol.14 (1), p.1-10, Article 33
Hauptverfasser: Estrada, Sergio, Iacob, Alina, Yeomans, Katelyn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the class of Gorenstein projective modules is special precovering over any left GF-closed ring such that every Gorenstein projective module is Gorenstein flat and every Gorenstein flat module has finite Gorenstein projective dimension. This class of rings includes (strictly) Gorenstein rings, commutative noetherian rings of finite Krull dimension, as well as right coherent and left n-perfect rings. In Sect. 4 we give examples of left GF-closed rings that have the desired properties (every Gorenstein projective module is Gorenstein flat and every Gorenstein flat has finite Gorenstein projective dimension) and that are not right coherent.
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-016-0822-5