Mixmaster model associated to a Borcherds algebra

The problem of integrability of the mixmaster model as a dynamical system with finite degrees of freedom is studied. The model belongs to the class of pseudo-Euclidean generalized Toda chains. It is presented as a quasi-homogeneous system after transformations of phase variables. Application of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gravitation & cosmology 2017, Vol.23 (1), p.20-27
1. Verfasser: Pavlov, A. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of integrability of the mixmaster model as a dynamical system with finite degrees of freedom is studied. The model belongs to the class of pseudo-Euclidean generalized Toda chains. It is presented as a quasi-homogeneous system after transformations of phase variables. Application of the method of getting Kovalevskaya exponents to the model leads to the generalized Adler–van Moerbeke formula for root vectors. A generalized Cartan matrix is constructed using simple root vectors inMinkowski space. The mixmaster model is associated to a Borcherds algebra. The known hyperbolic Kac–Moody algebra of the Chitre´ billiard model is obtained by using three spacelike root vectors.
ISSN:0202-2893
1995-0721
DOI:10.1134/S0202289317010157