Spectral properties of the complex airy operator on the half-line
We prove a theorem on the completeness of the system of root functions of the Schrödinger operator L = − d 2 / dx 2 + p ( x ) on the half-line R + with a potential p for which L appears to be maximal sectorial. An application of this theorem to the complex Airy operator L c = − d 2 / dx 2 + cx , c =...
Gespeichert in:
Veröffentlicht in: | Functional analysis and its applications 2017, Vol.51 (1), p.66-79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a theorem on the completeness of the system of root functions of the Schrödinger operator
L
= −
d
2
/
dx
2
+
p
(
x
) on the half-line R
+
with a potential
p
for which
L
appears to be maximal sectorial. An application of this theorem to the complex Airy operator
L
c
= −
d
2
/
dx
2
+
cx
,
c
= const, implies the completeness of the system of eigenfunctions of
L
c
for the case in which |arg
c
| < 2
π
/3.We use subtler methods to prove a theorem stating that the system of eigenfunctions of this special operator remains complete under the condition that |arg
c
| < 5
π
/6. |
---|---|
ISSN: | 0016-2663 1573-8485 |
DOI: | 10.1007/s10688-017-0168-1 |