Spectral properties of the complex airy operator on the half-line

We prove a theorem on the completeness of the system of root functions of the Schrödinger operator L = − d 2 / dx 2 + p ( x ) on the half-line R + with a potential p for which L appears to be maximal sectorial. An application of this theorem to the complex Airy operator L c = − d 2 / dx 2 + cx , c =...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Functional analysis and its applications 2017, Vol.51 (1), p.66-79
Hauptverfasser: Savchuk, A. M., Shkalikov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a theorem on the completeness of the system of root functions of the Schrödinger operator L = − d 2 / dx 2 + p ( x ) on the half-line R + with a potential p for which L appears to be maximal sectorial. An application of this theorem to the complex Airy operator L c = − d 2 / dx 2 + cx , c = const, implies the completeness of the system of eigenfunctions of L c for the case in which |arg c | < 2 π /3.We use subtler methods to prove a theorem stating that the system of eigenfunctions of this special operator remains complete under the condition that |arg c | < 5 π /6.
ISSN:0016-2663
1573-8485
DOI:10.1007/s10688-017-0168-1