On the Asymptotic Stability of Steady Flows with Nonzero Flux in Two-Dimensional Exterior Domains
The Navier–Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any L 2 -perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-05, Vol.352 (1), p.201-214 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Navier–Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any
L
2
-perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically decaying flux carrier with flux
Φ
<
2
π
and a small subcritically decaying term. Under the central symmetry assumption, the general hypothesis is also proven for any critically decaying steady solutions under a suitable smallness condition. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-016-2794-5 |