On the Asymptotic Stability of Steady Flows with Nonzero Flux in Two-Dimensional Exterior Domains

The Navier–Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any L 2 -perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-05, Vol.352 (1), p.201-214
1. Verfasser: Guillod, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Navier–Stokes equations in a two-dimensional exterior domain are considered. The asymptotic stability of stationary solutions satisfying a general hypothesis is proven under any L 2 -perturbation. In particular, the general hypothesis is valid if the steady solution is the sum of the critically decaying flux carrier with flux Φ < 2 π and a small subcritically decaying term. Under the central symmetry assumption, the general hypothesis is also proven for any critically decaying steady solutions under a suitable smallness condition.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-016-2794-5