Electrochemical deposition of carbon materials incorporated nickel sulfide composite as counter electrode for dye-sensitized solar cells

The various carbon-based materials incorporated nickel sulfide (NiS) composites have been electrochemically deposited on fluorine-doped tin oxide (FTO) glass substrate. The structure, surface morphology, and elemental composition of the electrodeposited NiS composite materials were characterized by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2017-04, Vol.23 (4), p.1017-1025
Hauptverfasser: Theerthagiri, J., Senthil, R. A., Arunachalam, Prabhakarn, Bhabu, K. Amarsingh, Selvi, A., Madhavan, J., Murugan, K., Arof, A. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The various carbon-based materials incorporated nickel sulfide (NiS) composites have been electrochemically deposited on fluorine-doped tin oxide (FTO) glass substrate. The structure, surface morphology, and elemental composition of the electrodeposited NiS composite materials were characterized by XRD, HR-SEM, and EDS. The electrochemically deposited various NiS composites such as NiS/AB (acetylene black), NiS/VC (Vulcan carbon), and NiS/MWCNT (multi walled carbon nanotubes) have been served as an efficient, low-cost counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Electrochemical impedance spectroscopy and cyclic voltammetry of NiS/AB CE composite materials exhibits a good conductivity and superior electrocatalytic performance over other various carbon incorporated materials. The positive synergistic effects, which increase the active catalytic sites and improved interfacial charge transfer, may be accountable for the superior electrocatalytic performance of NiS/AB composite materials The fabricated DSSC with NiS/AB CE reached a power conversion efficiency of 6.75%, which is equivalent with platinum electrode (7.20%). These results validate that the electrochemically deposited NiS/AB composite film is an auspicious alternative for low-cost and high efficient DSSCs.
ISSN:0947-7047
1862-0760
DOI:10.1007/s11581-016-1885-9