On non-conjugate Coxeter elements in well-generated reflection groups

Given an irreducible well-generated complex reflection group  W with Coxeter number  h , we call a Coxeter element any regular element (in the sense of Springer) of order  h in  W ; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter eleme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2017-04, Vol.285 (3-4), p.1041-1062
Hauptverfasser: Reiner, Victor, Ripoll, Vivien, Stump, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an irreducible well-generated complex reflection group  W with Coxeter number  h , we call a Coxeter element any regular element (in the sense of Springer) of order  h in  W ; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter elements forms a single orbit in  W under the action of reflection automorphisms. For Coxeter and Shephard groups, this implies that an element  c is a Coxeter element if and only if there exists a simple system  S of reflections such that  c is the product of the generators in  S . We moreover deduce multiple further implications of this property. In particular, we obtain that all noncrossing partition lattices of  W associated to different Coxeter elements are isomorphic. We also prove that there is a simply transitive action of the Galois group of the field of definition of  W on the set of conjugacy classes of Coxeter elements. Finally, we extend several of these properties to Springer’s regular elements of arbitrary order.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-016-1736-4