On non-conjugate Coxeter elements in well-generated reflection groups
Given an irreducible well-generated complex reflection group W with Coxeter number h , we call a Coxeter element any regular element (in the sense of Springer) of order h in W ; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter eleme...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2017-04, Vol.285 (3-4), p.1041-1062 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given an irreducible well-generated complex reflection group
W
with Coxeter number
h
, we call a Coxeter element any regular element (in the sense of Springer) of order
h
in
W
; this is a slight extension of the most common notion of Coxeter element. We show that the class of these Coxeter elements forms a single orbit in
W
under the action of reflection automorphisms. For Coxeter and Shephard groups, this implies that an element
c
is a Coxeter element if and only if there exists a simple system
S
of reflections such that
c
is the product of the generators in
S
. We moreover deduce multiple further implications of this property. In particular, we obtain that all noncrossing partition lattices of
W
associated to different Coxeter elements are isomorphic. We also prove that there is a simply transitive action of the Galois group of the field of definition of
W
on the set of conjugacy classes of Coxeter elements. Finally, we extend several of these properties to Springer’s regular elements of arbitrary order. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-016-1736-4 |