Multiple solutions for non-homogeneous degenerate Schrödinger equations in cone Sobolev spaces

The present paper deals with the study of semilinear and non-homogeneous Schrödinger equations on a manifold with conical singularity. We provide a suitable constant by Sobolev embedding constant and for p ∈ (2, 2∗) with respect to non-homogeneous term g ( x ) ∈ L 2 n /2 (B), which helps to find mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2017-03, Vol.48 (1), p.133-146
Hauptverfasser: Alimohammady, Mohsen, Jafari, Ali Asghar, Kalleji, Morteza Koozehgar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper deals with the study of semilinear and non-homogeneous Schrödinger equations on a manifold with conical singularity. We provide a suitable constant by Sobolev embedding constant and for p ∈ (2, 2∗) with respect to non-homogeneous term g ( x ) ∈ L 2 n /2 (B), which helps to find multiple solutions of our problem. More precisely, we prove the existence of two solutions to the problem 1.1 with negative and positive energy in cone Sobolev space H 2,0 1, n /2 (B). Finally, we consider p = 2 and we prove the existence and uniqueness of Fuchsian-Poisson problem.
ISSN:0019-5588
0975-7465
DOI:10.1007/s13226-017-0215-x