On the Strong Freese-Nation Property
We show that there is a boolean algebra that has the Freese-Nation property (FN) but not the strong Freese-Nation property (SFN), thus answering a question of Heindorf and Shapiro. Along the way, we produce some new characterizations of the FN and SFN in terms of sequences of elementary submodels.
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2017-03, Vol.34 (1), p.91-111 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that there is a boolean algebra that has the Freese-Nation property (FN) but not the strong Freese-Nation property (SFN), thus answering a question of Heindorf and Shapiro. Along the way, we produce some new characterizations of the FN and SFN in terms of sequences of elementary submodels. |
---|---|
ISSN: | 0167-8094 1572-9273 |
DOI: | 10.1007/s11083-016-9389-9 |