On irreducible subgroups of simple algebraic groups

Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2017-04, Vol.367 (3-4), p.1259-1309
Hauptverfasser: Burness, Timothy C., Marion, Claude, Testerman, Donna M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1309
container_issue 3-4
container_start_page 1259
container_title Mathematische annalen
container_volume 367
creator Burness, Timothy C.
Marion, Claude
Testerman, Donna M.
description Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples ( G ,  H ,  V ) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples ( G ,  H ,  V ) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG -module.
doi_str_mv 10.1007/s00208-016-1432-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880745640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880745640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2b42ab14e5e669ce2c1d24c1ca95c22bd6ae78dc0510acf2738c8d6ed1ea58743</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hV4hyw89FmRzTxJU3aBc5RmrpVp64tyXpgv56McuDCyZbf97Xlh7FbhHsEKB4igADDAXOOSgp-PGOLnwYNFOdskWTNtZF4ya5i3AGABNALJrd91oZA1eTbsqMsTmUThmmM2VBnsd2Paea6hsrgWp_N0jW7qF0X6ea3LtnH89P7-pVvti9v68cN91KvDlyUSrgSFWnK85Un4bESyqN3K-2FKKvcUWEqDxrB-VoU0nhT5VQhOW0KJZfsbt47huFzoniwu2EKfTpp0aS3lM4VJBfOLh-GGAPVdgzt3oUvi2BPbOzMxiY29oTEHlNGzJmYvH1D4c_mf0PfQ8tnDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880745640</pqid></control><display><type>article</type><title>On irreducible subgroups of simple algebraic groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Burness, Timothy C. ; Marion, Claude ; Testerman, Donna M.</creator><creatorcontrib>Burness, Timothy C. ; Marion, Claude ; Testerman, Donna M.</creatorcontrib><description>Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples ( G ,  H ,  V ) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples ( G ,  H ,  V ) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG -module.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-016-1432-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Group theory ; Mathematics ; Mathematics and Statistics ; Subgroups</subject><ispartof>Mathematische annalen, 2017-04, Vol.367 (3-4), p.1259-1309</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2b42ab14e5e669ce2c1d24c1ca95c22bd6ae78dc0510acf2738c8d6ed1ea58743</citedby><cites>FETCH-LOGICAL-c359t-2b42ab14e5e669ce2c1d24c1ca95c22bd6ae78dc0510acf2738c8d6ed1ea58743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-016-1432-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-016-1432-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Burness, Timothy C.</creatorcontrib><creatorcontrib>Marion, Claude</creatorcontrib><creatorcontrib>Testerman, Donna M.</creatorcontrib><title>On irreducible subgroups of simple algebraic groups</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples ( G ,  H ,  V ) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples ( G ,  H ,  V ) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG -module.</description><subject>Algebra</subject><subject>Group theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kE1PwzAMhiMEEmPwA7hV4hyw89FmRzTxJU3aBc5RmrpVp64tyXpgv56McuDCyZbf97Xlh7FbhHsEKB4igADDAXOOSgp-PGOLnwYNFOdskWTNtZF4ya5i3AGABNALJrd91oZA1eTbsqMsTmUThmmM2VBnsd2Paea6hsrgWp_N0jW7qF0X6ea3LtnH89P7-pVvti9v68cN91KvDlyUSrgSFWnK85Un4bESyqN3K-2FKKvcUWEqDxrB-VoU0nhT5VQhOW0KJZfsbt47huFzoniwu2EKfTpp0aS3lM4VJBfOLh-GGAPVdgzt3oUvi2BPbOzMxiY29oTEHlNGzJmYvH1D4c_mf0PfQ8tnDQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Burness, Timothy C.</creator><creator>Marion, Claude</creator><creator>Testerman, Donna M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>On irreducible subgroups of simple algebraic groups</title><author>Burness, Timothy C. ; Marion, Claude ; Testerman, Donna M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2b42ab14e5e669ce2c1d24c1ca95c22bd6ae78dc0510acf2738c8d6ed1ea58743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Group theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burness, Timothy C.</creatorcontrib><creatorcontrib>Marion, Claude</creatorcontrib><creatorcontrib>Testerman, Donna M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burness, Timothy C.</au><au>Marion, Claude</au><au>Testerman, Donna M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On irreducible subgroups of simple algebraic groups</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>367</volume><issue>3-4</issue><spage>1259</spage><epage>1309</epage><pages>1259-1309</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples ( G ,  H ,  V ) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples ( G ,  H ,  V ) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG -module.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-016-1432-z</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2017-04, Vol.367 (3-4), p.1259-1309
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_1880745640
source Springer Nature - Complete Springer Journals
subjects Algebra
Group theory
Mathematics
Mathematics and Statistics
Subgroups
title On irreducible subgroups of simple algebraic groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20irreducible%20subgroups%20of%20simple%20algebraic%20groups&rft.jtitle=Mathematische%20annalen&rft.au=Burness,%20Timothy%20C.&rft.date=2017-04-01&rft.volume=367&rft.issue=3-4&rft.spage=1259&rft.epage=1309&rft.pages=1259-1309&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-016-1432-z&rft_dat=%3Cproquest_cross%3E1880745640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880745640&rft_id=info:pmid/&rfr_iscdi=true