On irreducible subgroups of simple algebraic groups

Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2017-04, Vol.367 (3-4), p.1259-1309
Hauptverfasser: Burness, Timothy C., Marion, Claude, Testerman, Donna M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible. In this paper, we study the triples ( G ,  H ,  V ) of this form when G is a classical group and H is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples ( G ,  H ,  V ) to the case where G is an orthogonal group, V is a spin module and H normalizes an orthogonal decomposition of the natural KG -module.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-016-1432-z