On irreducible subgroups of simple algebraic groups
Let G be a simple algebraic group over an algebraically closed field K of characteristic p ⩾ 0 , let H be a proper closed subgroup of G and let V be a nontrivial irreducible KG -module, which is p -restricted, tensor indecomposable and rational. Assume that the restriction of V to H is irreducible....
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2017-04, Vol.367 (3-4), p.1259-1309 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a simple algebraic group over an algebraically closed field
K
of characteristic
p
⩾
0
, let
H
be a proper closed subgroup of
G
and let
V
be a nontrivial irreducible
KG
-module, which is
p
-restricted, tensor indecomposable and rational. Assume that the restriction of
V
to
H
is irreducible. In this paper, we study the triples (
G
,
H
,
V
) of this form when
G
is a classical group and
H
is positive-dimensional. Combined with earlier work of Dynkin, Seitz, Testerman and others, our main theorem reduces the problem of classifying the triples (
G
,
H
,
V
) to the case where
G
is an orthogonal group,
V
is a spin module and
H
normalizes an orthogonal decomposition of the natural
KG
-module. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-016-1432-z |