Operators from Mirror Curves and the Quantum Dilogarithm
Mirror manifolds to toric Calabi–Yau threefolds are encoded in algebraic curves. The quantization of these curves leads naturally to quantum-mechanical operators on the real line. We show that, for a large number of local del Pezzo Calabi–Yau threefolds, these operators are of trace class. In some s...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2016-09, Vol.346 (3), p.967-994 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mirror manifolds to toric Calabi–Yau threefolds are encoded in algebraic curves. The quantization of these curves leads naturally to quantum-mechanical operators on the real line. We show that, for a large number of local del Pezzo Calabi–Yau threefolds, these operators are of trace class. In some simple geometries, like local
P
2
, we calculate the integral kernel of the corresponding operators in terms of Faddeev's quantum dilogarithm. Their spectral traces are expressed in terms of multi-dimensional integrals, similar to the state-integrals appearing in three-manifold topology, and we show that they can be evaluated explicitly in some cases. Our results provide further verifications of a recent conjecture which gives an explicit expression for the Fredholm determinant of these operators, in terms of enumerative invariants of the underlying Calabi–Yau threefolds. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-015-2499-1 |