Application of soft computing techniques for maximum power point tracking of SPV system

Conventional maximum power point tracking (MPPT) algorithms fails to track peak power from a solar photovoltaic panel (SPV) effectively under rapidly changing atmospheric and partial shading conditions (PSC). To track peak power more effectively under these conditions, low cost, powerful soft comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2017-01, Vol.141, p.182-202
Hauptverfasser: Dileep, G., Singh, S.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventional maximum power point tracking (MPPT) algorithms fails to track peak power from a solar photovoltaic panel (SPV) effectively under rapidly changing atmospheric and partial shading conditions (PSC). To track peak power more effectively under these conditions, low cost, powerful soft computing (SC) have been introduced by the researchers. Due to the ability to solve non-linear problems, flexibility and adaptive nature, SC based MPPT techniques can track peak power under varying atmospheric conditions. Various SC based MPPT techniques have been proposed by researchers till date. Comprehensive studies on all these techniques are not available. This work summarizes working principle of various SC-MPPT techniques and are compared each other based on the certain parameters like accuracy, tracking efficiency, SPV array dependency, convergence time, complexity of algorithm, hardware implementation, ability to handle PSC’s and variables used. The information that is gathered and summarized in this paper will help researchers for future studies in this area.
ISSN:0038-092X
1471-1257
DOI:10.1016/j.solener.2016.11.034