System-Level Design of a 64-Channel Low Power Neural Spike Recording Sensor

This paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2017-04, Vol.11 (2), p.420-433
Hauptverfasser: Delgado-Restituto, Manuel, Rodriguez-Perez, Alberto, Darie, Angela, Soto-Sanchez, Cristina, Fernandez-Jover, Eduardo, Rodriguez-Vazquez, Angel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports an integrated 64-channel neural spike recording sensor, together with all the circuitry to process and configure the channels, process the neural data, transmit via a wireless link the information and receive the required instructions. Neural signals are acquired, filtered, digitized and compressed in the channels. Additionally, each channel implements an auto-calibration algorithm which individually configures the transfer characteristics of the recording site. The system has two transmission modes; in one case the information captured by the channels is sent as uncompressed raw data; in the other, feature vectors extracted from the detected neural spikes are released. Data streams coming from the channels are serialized by the embedded digital processor. Experimental results, including in vivo measurements, show that the power consumption of the complete system is lower than 330 μW.
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2016.2618319