New approach for the simulation of chain drive dynamics with consideration of the elastic environment

In the development and layout of timing chain drives for internal combustion engines, multi-body simulation is used to evaluate the chain drive in terms of both the acoustic and the dynamic behaviour. Owing to the complex structure of chain drives and surrounding components, the system cannot be des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part K, Journal of multi-body dynamics Journal of multi-body dynamics, 2017-03, Vol.231 (1), p.103-120
Hauptverfasser: Grinschgl, M, Reich, FM, Abeltshauser, R, Eder, M, Antretter, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the development and layout of timing chain drives for internal combustion engines, multi-body simulation is used to evaluate the chain drive in terms of both the acoustic and the dynamic behaviour. Owing to the complex structure of chain drives and surrounding components, the system cannot be described by analytical equations. The elastic behaviour of the single components can influence the dynamic and acoustic behaviour of the chain drive system and the timing system. This paper describes a new methodology for chain drive simulation with a full 3D representation of the chain drive and the option of a fully elastic consideration of the surrounding structures. The surrounding structures and components can be included in a fully elastic manner as finite element components in an arbitrary range. The described method allows the combination of typical multi-body components, such as chain links, with finite element structures. After presenting the strategy of modelling the chain drive as a combination of multi-body simulation and the finite element method, simulations are compared with conducted experiments for a simple two-sprocket chain drive. The simulation results show good agreement with the measurements.
ISSN:1464-4193
2041-3068
DOI:10.1177/1464419316653002