Continuity of subsurface fault structure revealed by gravity anomaly: the eastern boundary fault zone of the Niigata plain, central Japan

We have investigated gravity anomalies around the Niigata plain, which is a sedimentary basin in central Japan bounded by mountains, to examine the continuity of subsurface fault structures of a large fault zone—the eastern boundary fault zone of the Niigata plain (EBFZNP). The features of the Bougu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth, planets, and space planets, and space, 2017-01, Vol.69 (1), p.1, Article 15
Hauptverfasser: Wada, Shigeki, Sawada, Akihiro, Hiramatsu, Yoshihiro, Matsumoto, Nayuta, Okada, Shinsuke, Tanaka, Toshiyuki, Honda, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have investigated gravity anomalies around the Niigata plain, which is a sedimentary basin in central Japan bounded by mountains, to examine the continuity of subsurface fault structures of a large fault zone—the eastern boundary fault zone of the Niigata plain (EBFZNP). The features of the Bouguer anomaly and its first horizontal and vertical derivatives clearly illustrate the EBFZNP. The steep first horizontal derivative and the zero isoline of the vertical derivative are clearly recognized along the entire EBFZNP over an area that shows no surface topographic features of an active fault. Two-dimensional density structure analyses also confirm a relationship between the two first derivatives and the subsurface fault structure. Therefore, we conclude that the length of the EBFZNP as an active fault extends to ~56 km, which is longer than previously estimated. This length leads to an estimation of a moment magnitude of 7.4 of an expected earthquake from the EBFZNP. Graphical abstract .
ISSN:1880-5981
1880-5981
DOI:10.1186/s40623-017-0602-x