Application of an EMMS Model for Bubbly Fluidized Bed

In computational fluid dynamics (CFD) of fluidization processes, the modeling of drag between fluid and particles has a direct effect on the results. The EMMS (Energy Minimization Multi-Scale) models are based on the micro-scale of individual particles and the macro scale of equipment to model the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2017-03, Vol.372, p.170-179
Hauptverfasser: Zinani, Flavia Schwarz Franceschini, Kestering, Daniel A., Bleyer, George C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In computational fluid dynamics (CFD) of fluidization processes, the modeling of drag between fluid and particles has a direct effect on the results. The EMMS (Energy Minimization Multi-Scale) models are based on the micro-scale of individual particles and the macro scale of equipment to model the meso-scale phenomena related to particle clustering, which directly affect the drag between fluid and particles. The EMMS/bubbling model was introduced as a change from the classic EMMS model to specific bubbling fluid bed conditions. The present work aims to apply the EMMS/bubbling model in the CFD of Geldart-D particles fluidized by air. The results were compared with results from the literature. It was observed that, for particles of Geldart groups A and B, the results using the EMMS/bubbling model agreed well with the literature. The CFD results for Geldart-D particles showed good agreement with the literature results for this method using coarse grids.
ISSN:1012-0386
1662-9507
1662-9507
DOI:10.4028/www.scientific.net/DDF.372.170