Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models

Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2016-12, Vol.111 (516), p.1775-1790
Hauptverfasser: Zhang, Xinyu, Yu, Dalei, Zou, Guohua, Liang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1790
container_issue 516
container_start_page 1775
container_title Journal of the American Statistical Association
container_volume 111
creator Zhang, Xinyu
Yu, Dalei
Zou, Guohua
Liang, Hua
description Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising.
doi_str_mv 10.1080/01621459.2015.1115762
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1875840994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45027526</jstor_id><sourcerecordid>45027526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-19d7bf5d6eba59b298cef5e7808313c158b7970ea3c9942ccd4a61434fecfba63</originalsourceid><addsrcrecordid>eNp9kU9LJDEQxcPiwo5_PoLQsBcvPSbppJPcFBldYcSLC95COp1IhkwyJj3q-Ok3Tc96EDGXgrzfqyrqAXCK4BxBDs8hajEiVMwxRHSOEKKsxT_ADNGG1ZiRxwMwG5l6hH6Bw5xXsDzG-Qz4-83g1spXd7E3vrp8MUk9ufBULfL4P7gYKhtTdWNCUbx7N321dMGoNDlypUL_pereTF8vrDV6yHv2GPy0ymdzsq9H4O_14uHqT728v7m9ulzWmuB2qJHoWWdp35pOUdFhwbWx1DAOeYMajSjvmGDQqEYLQbDWPVEtIg0ps2yn2uYInE19Nyk-b00e5NplbbxXwcRtlohzAgUlhBT09yd0FbcplO0KxejIiZGiE6VTzDkZKzepXCftJIJyzED-z0COGch9BsV3OvlWeYjpw0QoxIzicdGLSXehHHmtXmPyvRzUzsdkkwraZdl8P-IfrAeXjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875840994</pqid></control><display><type>article</type><title>Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Zhang, Xinyu ; Yu, Dalei ; Zou, Guohua ; Liang, Hua</creator><creatorcontrib>Zhang, Xinyu ; Yu, Dalei ; Zou, Guohua ; Liang, Hua</creatorcontrib><description>Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2015.1115762</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Asymptotic optimality ; Generalized linear models ; Kullback-Leibler loss ; Misspecification ; Penalized generalized weighted least squares (PGWLS) ; Prediction accuracy ; Statistics ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 2016-12, Vol.111 (516), p.1775-1790</ispartof><rights>2016 American Statistical Association 2016</rights><rights>Copyright © 2016 American Statistical Association</rights><rights>2016 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-19d7bf5d6eba59b298cef5e7808313c158b7970ea3c9942ccd4a61434fecfba63</citedby><cites>FETCH-LOGICAL-c426t-19d7bf5d6eba59b298cef5e7808313c158b7970ea3c9942ccd4a61434fecfba63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45027526$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45027526$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254,59647,60436</link.rule.ids></links><search><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Yu, Dalei</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><creatorcontrib>Liang, Hua</creatorcontrib><title>Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models</title><title>Journal of the American Statistical Association</title><description>Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising.</description><subject>Asymptotic optimality</subject><subject>Generalized linear models</subject><subject>Kullback-Leibler loss</subject><subject>Misspecification</subject><subject>Penalized generalized weighted least squares (PGWLS)</subject><subject>Prediction accuracy</subject><subject>Statistics</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LJDEQxcPiwo5_PoLQsBcvPSbppJPcFBldYcSLC95COp1IhkwyJj3q-Ok3Tc96EDGXgrzfqyrqAXCK4BxBDs8hajEiVMwxRHSOEKKsxT_ADNGG1ZiRxwMwG5l6hH6Bw5xXsDzG-Qz4-83g1spXd7E3vrp8MUk9ufBULfL4P7gYKhtTdWNCUbx7N321dMGoNDlypUL_pereTF8vrDV6yHv2GPy0ymdzsq9H4O_14uHqT728v7m9ulzWmuB2qJHoWWdp35pOUdFhwbWx1DAOeYMajSjvmGDQqEYLQbDWPVEtIg0ps2yn2uYInE19Nyk-b00e5NplbbxXwcRtlohzAgUlhBT09yd0FbcplO0KxejIiZGiE6VTzDkZKzepXCftJIJyzED-z0COGch9BsV3OvlWeYjpw0QoxIzicdGLSXehHHmtXmPyvRzUzsdkkwraZdl8P-IfrAeXjQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Zhang, Xinyu</creator><creator>Yu, Dalei</creator><creator>Zou, Guohua</creator><creator>Liang, Hua</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group,LLC</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20161201</creationdate><title>Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models</title><author>Zhang, Xinyu ; Yu, Dalei ; Zou, Guohua ; Liang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-19d7bf5d6eba59b298cef5e7808313c158b7970ea3c9942ccd4a61434fecfba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic optimality</topic><topic>Generalized linear models</topic><topic>Kullback-Leibler loss</topic><topic>Misspecification</topic><topic>Penalized generalized weighted least squares (PGWLS)</topic><topic>Prediction accuracy</topic><topic>Statistics</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyu</creatorcontrib><creatorcontrib>Yu, Dalei</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><creatorcontrib>Liang, Hua</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyu</au><au>Yu, Dalei</au><au>Zou, Guohua</au><au>Liang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>111</volume><issue>516</issue><spage>1775</spage><epage>1790</epage><pages>1775-1790</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2015.1115762</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2016-12, Vol.111 (516), p.1775-1790
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_1875840994
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Taylor & Francis:Master (3349 titles)
subjects Asymptotic optimality
Generalized linear models
Kullback-Leibler loss
Misspecification
Penalized generalized weighted least squares (PGWLS)
Prediction accuracy
Statistics
Theory and Methods
title Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Model%20Averaging%20Estimation%20for%20Generalized%20Linear%20Models%20and%20Generalized%20Linear%20Mixed-Effects%20Models&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Zhang,%20Xinyu&rft.date=2016-12-01&rft.volume=111&rft.issue=516&rft.spage=1775&rft.epage=1790&rft.pages=1775-1790&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2015.1115762&rft_dat=%3Cjstor_proqu%3E45027526%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875840994&rft_id=info:pmid/&rft_jstor_id=45027526&rfr_iscdi=true