Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models
Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2016-12, Vol.111 (516), p.1775-1790 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2015.1115762 |