Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models

Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2016-12, Vol.111 (516), p.1775-1790
Hauptverfasser: Zhang, Xinyu, Yu, Dalei, Zou, Guohua, Liang, Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback-Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.2015.1115762