A High-Linearity, Ring-Oscillator-Based, Vernier Time-to-Digital Converter Utilizing Carry Chains in FPGAs

Time-to-digital converters (TDCs) using dedicated carry chains of field programmable gate arrays (FPGAs) are usually organized in tapped-delay-line type which are intensively researched in recent years. However this method incurs poor differential nonlinearity (DNL) which arises from the inherent un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2017-01, Vol.64 (1), p.697-704
Hauptverfasser: Cui, Ke, Ren, Zhongjie, Li, Xiangyu, Liu, Zongkai, Zhu, Rihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-to-digital converters (TDCs) using dedicated carry chains of field programmable gate arrays (FPGAs) are usually organized in tapped-delay-line type which are intensively researched in recent years. However this method incurs poor differential nonlinearity (DNL) which arises from the inherent uneven bin granularity. This paper proposes a TDC architecture which utilizes the carry chains in a quite different manner in order to alleviate this long-standing problem. Two independent carry chains working as the delay lines for the fine time interpolation are organized in a ring-oscillator-based Vernier style and the time difference between them is finely adjusted by assigning different number of basic delay cells. A specific design flow is described to obtain the desired delay difference. The TDC was implemented on a Stratix III FPGA. Test results show that the obtained resolution is 31 ps and the DNL\INL is in the range of (-0.080 LSB, 0.073 LSB)\(-0.087 LSB, 0.091 LSB). This demonstrates that the proposed architecture greatly improves linearity compared to previous techniques. Additionally the resource cost is rather low which uses only 319 LUTs and 104 registers per TDC channel.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2016.2632168