Single-Event Effects in a Millimeter-Wave Receiver Front-End Implemented in 90 nm, 300 GHz SiGe HBT Technology

The single-event transient (SET) response of a W-band (75-110 GHz) radar receiver front-end is investigated in this paper. A new technique to facilitate the SET testing of the high frequency transceivers is proposed and demonstrated experimentally. The entire radar receiver front-end, including the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2017-01, Vol.64 (1), p.536-543
Hauptverfasser: Zeinolabedinzadeh, Saeed, Ulusoy, Ahmet C., Inanlou, Farzad, Hanbin Ying, Yunyi Gong, Fleetwood, Zachary E., Roche, Nicolas J.-H, Khachatrian, Ani, McMorrow, Dale, Buchner, Stephen P., Warner, Jeffrey H., Paki-Amouzou, Pauline, Cressler, John D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The single-event transient (SET) response of a W-band (75-110 GHz) radar receiver front-end is investigated in this paper. A new technique to facilitate the SET testing of the high frequency transceivers is proposed and demonstrated experimentally. The entire radar receiver front-end, including the high frequency signal sources and modulators, were designed and fully integrated in 90 nm 300 GHz SiGe process technology (Global Foundries SiGe 9HP). Two-photon absorption (TPA) laser pulses were utilized to induce transient currents in different devices in various circuit blocks. The study shows how short transient pulses from the high frequency tuned circuits are propagated throughout the receiver and are broadened while passing through low-pass filters present at supply nodes and the low-pass filter following the down-conversion mixer, thus affecting the digital data at the output of the receiver. The proposed methodology allows the study of the effect of SETs on the recovered digital data at the output of the high frequency receivers, thus allowing bit error rate calculations. Comprehensive device and circuit level simulations were also performed, and a close agreement between the measurement results and simulation data was demonstrated. To the authors' best knowledge, this is the first study of SET on full receiver at millimeter-wave (mmW) frequencies.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2016.2638698