Asymptotic Expansions of the Null Distribution of the LR Test Statistic for Random-Effects Covariance Structure in a Parallel Profile Model
This paper is concerned with the null distribution of the likelihood ratio test statistic −2log Λ for testing the adequacy of a random-effects covariance structure in a parallel profile model. It is known that the null distribution of −2log Λ converges to χ2f or 0.5χ2f + 0.5χ2f+1 when the sample siz...
Gespeichert in:
Veröffentlicht in: | JOURNAL OF THE JAPAN STATISTICAL SOCIETY 2016/09/20, Vol.46(1), pp.51-79 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the null distribution of the likelihood ratio test statistic −2log Λ for testing the adequacy of a random-effects covariance structure in a parallel profile model. It is known that the null distribution of −2log Λ converges to χ2f or 0.5χ2f + 0.5χ2f+1 when the sample size tends to infinity. In order to extend this result, we derive asymptotic expansions of the null distribution of −2log Λ. The accuracy of the approximations based on the limiting distribution and an asymptotic expansion are compared through numerical experiments. |
---|---|
ISSN: | 1882-2754 1348-6365 |
DOI: | 10.14490/jjss.46.51 |