A Convergent Algorithm for Solving Higher-Order Nonlinear Fractional Boundary Value Problems
We present a numerical algorithm for solving nonlinear fractional boundary value problems of order n, n N . The Bernstein polynomials (BPs) are redefined in a fractional form over an arbitrary interval [a, b]. Theoretical results related to the ractional Bernstein polynomials (FBPs) are proven. Th...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2015-12, Vol.18 (6), p.1423-1440 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a numerical algorithm for solving nonlinear fractional boundary value problems of order
n, n N
. The Bernstein polynomials (BPs) are redefined in a fractional form over an arbitrary interval [a, b]. Theoretical results related to the ractional Bernstein polynomials (FBPs) are proven. The well-known shooting technique is extended for the numerical treatment of nonlinear fractional boundary value problems of arbitrary order. The initial value problems were solved using a collocation method with collocation points at the location of the local maximum of the FBPs. Several examples are discussed to illustrate the efficiency and accuracy of the present scheme. |
---|---|
ISSN: | 1311-0454 1314-2224 |
DOI: | 10.1515/fca-2015-0082 |