A Convergent Algorithm for Solving Higher-Order Nonlinear Fractional Boundary Value Problems

We present a numerical algorithm for solving nonlinear fractional boundary value problems of order n, n   N . The Bernstein polynomials (BPs) are redefined in a fractional form over an arbitrary interval [a, b]. Theoretical results related to the ractional Bernstein polynomials (FBPs) are proven. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2015-12, Vol.18 (6), p.1423-1440
Hauptverfasser: Al-Mdallal, Qasem M., Hajji, Mohamed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a numerical algorithm for solving nonlinear fractional boundary value problems of order n, n   N . The Bernstein polynomials (BPs) are redefined in a fractional form over an arbitrary interval [a, b]. Theoretical results related to the ractional Bernstein polynomials (FBPs) are proven. The well-known shooting technique is extended for the numerical treatment of nonlinear fractional boundary value problems of arbitrary order. The initial value problems were solved using a collocation method with collocation points at the location of the local maximum of the FBPs. Several examples are discussed to illustrate the efficiency and accuracy of the present scheme.
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2015-0082