Existence and symmetry for elliptic equations in ^sup n^ with arbitrary growth in the gradient
We study the semilinear elliptic equation [Delta]u + g(x, u, Du) = 0 in n. The nonlinearities g can have arbitrary growth in u and Du, including, in particular, exponential behavior. No restriction is imposed on the behavior of g(x, z, p) at infinity except in the variable x. We obtain a solution u...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2016-11, Vol.130 (1), p.1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the semilinear elliptic equation [Delta]u + g(x, u, Du) = 0 in n. The nonlinearities g can have arbitrary growth in u and Du, including, in particular, exponential behavior. No restriction is imposed on the behavior of g(x, z, p) at infinity except in the variable x. We obtain a solution u which is locally unique and inherits many of the symmetry properties of g. Positivity and asymptotic behavior of the solution are also addressed. Our results can be extended to other domains, such as the half-space and exterior domains. Finally, we give some examples. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-016-0027-7 |