A Liouville theorem for ...-harmonic functions on exterior domains

We prove Liouville type theorems for ...-harmonic functions on exterior domains of ..., where ... and ... We show that every positive ...-harmonic function satisfying zero Dirichlet, Neumann or Robin boundary conditions and having zero limit as ... tends to infinity is identically zero. In the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2015-09, Vol.19 (3), p.577
Hauptverfasser: Dancer, E N, Daners, Daniel, Hauer, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove Liouville type theorems for ...-harmonic functions on exterior domains of ..., where ... and ... We show that every positive ...-harmonic function satisfying zero Dirichlet, Neumann or Robin boundary conditions and having zero limit as ... tends to infinity is identically zero. In the case of zero Neumann boundary conditions, we establish that any semi-bounded ...-harmonic function is constant if ... If ..., then it is either constant or it behaves asymptotically like the fundamental solution of the homogeneous ...-Laplace equation.
ISSN:1385-1292
1572-9281
DOI:10.1007/s11117-014-0316-2