Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes

Geothermal energy plays an increasingly important role as a renewable energy source. However, it induces temperature changes in natural thermally static groundwater ecosystems. Temperature impacts can considerably alter the groundwater chemical composition and quality, the metabolism of organisms, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2016-10, Vol.75 (20), p.1, Article 1391
Hauptverfasser: Griebler, Christian, Brielmann, Heike, Haberer, Christina M., Kaschuba, Sigrid, Kellermann, Claudia, Stumpp, Christine, Hegler, Florian, Kuntz, David, Walker-Hertkorn, Simone, Lueders, Tillmann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geothermal energy plays an increasingly important role as a renewable energy source. However, it induces temperature changes in natural thermally static groundwater ecosystems. Temperature impacts can considerably alter the groundwater chemical composition and quality, the metabolism of organisms, and, consequently, biogeochemical processes and ecosystem functions. Combining original data from current studies with a compact review of recent findings, we show that a moderate increase in groundwater/aquifer temperature [+5 to 10 Kelvin (K)] generally causes only minor changes in water chemistry, microbial biodiversity, and ecosystem function in non-contaminated and energy-poor (oligotrophic) groundwater systems. In aquifers that are contaminated with organics, nutrients, and heavy metals—typical in urban areas and at sites with intensive land use (e.g., agriculture)—and particularly at temperatures ≥30 °C as regularly reached when heat is actively stored in aquifers, significant changes in water quality and ecological patterns can result. Here most critical are the heat-related mobilization of organic matter and contaminants (e.g., arsenic), the reduction and depletion of dissolved oxygen, and consequently the consecutive shift to anaerobic redox processes that may produce toxic and corrosive products (e.g., hydrogen sulfide) and greenhouse gases (e.g., methane and carbon dioxide). Severe temperature alterations lead to a reduced biodiversity of the aquifer’s microbial community with the establishment of atypical thermophilic assemblages. Groundwater fauna, which is specifically adapted to the cold groundwater habitat, may be sensitive to thermal changes at temperature increases of only 5 K with long-term emigration or direct lethal effects. From an ecological point of view, long-lasting or reoccurring temperature alterations need to be carefully evaluated and regulated in the future. We suggest developing local and regional vulnerability concepts for the sustainable and ecologically sound use of subterranean heat and cold.
ISSN:1866-6280
1866-6299
DOI:10.1007/s12665-016-6207-z