Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems

This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Electronics and Telecommunications 2015-09, Vol.61 (3), p.289-300
1. Verfasser: Kusy, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 3
container_start_page 289
container_title International Journal of Electronics and Telecommunications
container_volume 61
creator Kusy, Maciej
description This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.
doi_str_mv 10.1515/eletel-2015-0038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1863294235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311653581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d7865553aee11f229f7cd690a13d8bea8f31e1d857d69ccd7057366e1f09d30e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxRdRsNTePS54Xk12mt3sRZDWL6gfiJ5DmkwkNe3WJEvpf2_W9dCLp3nzeL-BeVl2TsklZZRdocOIrigJZQUhwI-yUQmEFLQBOD7Qp9kkhBUhKTetYcpGmZzbNW6CbTfS2bjP31B3KqY1N63PX327lEvrbIhW5c_YeenSiLvWf-V2kz-htipZcxllPnMyBGuS8cv3rMN1OMtOjHQBJ39znH3c3b7PHorFy_3j7GZRKKh4LHTNK8YYSERKTVk2pla6aoikoPkSJTdAkWrO6uQqpWvCaqgqpIY0GgjCOLsY7m59-91hiGLVdj69FQTlFZTNtASWUmRIKd-G4NGIrbdr6feCEtF3KYYuRd-l6LtMyPWA7KSL6DV--m6fxMH9f9CKQskb-AFi1X3z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863294235</pqid></control><display><type>article</type><title>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kusy, Maciej</creator><creatorcontrib>Kusy, Maciej</creatorcontrib><description>This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.</description><identifier>ISSN: 2300-1933</identifier><identifier>ISSN: 2081-8491</identifier><identifier>EISSN: 2300-1933</identifier><identifier>DOI: 10.1515/eletel-2015-0038</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>dimensionality reduction ; feature extraction ; feature selection ; prediction ability ; principal component analysis ; probabilistic neural network ; random forest ; single decision tree</subject><ispartof>International Journal of Electronics and Telecommunications, 2015-09, Vol.61 (3), p.289-300</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d7865553aee11f229f7cd690a13d8bea8f31e1d857d69ccd7057366e1f09d30e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27915,27916</link.rule.ids></links><search><creatorcontrib>Kusy, Maciej</creatorcontrib><title>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</title><title>International Journal of Electronics and Telecommunications</title><description>This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.</description><subject>dimensionality reduction</subject><subject>feature extraction</subject><subject>feature selection</subject><subject>prediction ability</subject><subject>principal component analysis</subject><subject>probabilistic neural network</subject><subject>random forest</subject><subject>single decision tree</subject><issn>2300-1933</issn><issn>2081-8491</issn><issn>2300-1933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1LAzEQxRdRsNTePS54Xk12mt3sRZDWL6gfiJ5DmkwkNe3WJEvpf2_W9dCLp3nzeL-BeVl2TsklZZRdocOIrigJZQUhwI-yUQmEFLQBOD7Qp9kkhBUhKTetYcpGmZzbNW6CbTfS2bjP31B3KqY1N63PX327lEvrbIhW5c_YeenSiLvWf-V2kz-htipZcxllPnMyBGuS8cv3rMN1OMtOjHQBJ39znH3c3b7PHorFy_3j7GZRKKh4LHTNK8YYSERKTVk2pla6aoikoPkSJTdAkWrO6uQqpWvCaqgqpIY0GgjCOLsY7m59-91hiGLVdj69FQTlFZTNtASWUmRIKd-G4NGIrbdr6feCEtF3KYYuRd-l6LtMyPWA7KSL6DV--m6fxMH9f9CKQskb-AFi1X3z</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kusy, Maciej</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150901</creationdate><title>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</title><author>Kusy, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d7865553aee11f229f7cd690a13d8bea8f31e1d857d69ccd7057366e1f09d30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>dimensionality reduction</topic><topic>feature extraction</topic><topic>feature selection</topic><topic>prediction ability</topic><topic>principal component analysis</topic><topic>probabilistic neural network</topic><topic>random forest</topic><topic>single decision tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusy, Maciej</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International Journal of Electronics and Telecommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusy, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</atitle><jtitle>International Journal of Electronics and Telecommunications</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>61</volume><issue>3</issue><spage>289</spage><epage>300</epage><pages>289-300</pages><issn>2300-1933</issn><issn>2081-8491</issn><eissn>2300-1933</eissn><abstract>This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/eletel-2015-0038</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-1933
ispartof International Journal of Electronics and Telecommunications, 2015-09, Vol.61 (3), p.289-300
issn 2300-1933
2081-8491
2300-1933
language eng
recordid cdi_proquest_journals_1863294235
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects dimensionality reduction
feature extraction
feature selection
prediction ability
principal component analysis
probabilistic neural network
random forest
single decision tree
title Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20Reduction%20for%20Probabilistic%20Neural%20Network%20in%20Medical%20Data%20Classification%20Problems&rft.jtitle=International%20Journal%20of%20Electronics%20and%20Telecommunications&rft.au=Kusy,%20Maciej&rft.date=2015-09-01&rft.volume=61&rft.issue=3&rft.spage=289&rft.epage=300&rft.pages=289-300&rft.issn=2300-1933&rft.eissn=2300-1933&rft_id=info:doi/10.1515/eletel-2015-0038&rft_dat=%3Cproquest_cross%3E4311653581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863294235&rft_id=info:pmid/&rfr_iscdi=true