Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems
This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a...
Gespeichert in:
Veröffentlicht in: | International Journal of Electronics and Telecommunications 2015-09, Vol.61 (3), p.289-300 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 3 |
container_start_page | 289 |
container_title | International Journal of Electronics and Telecommunications |
container_volume | 61 |
creator | Kusy, Maciej |
description | This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure. |
doi_str_mv | 10.1515/eletel-2015-0038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1863294235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4311653581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d7865553aee11f229f7cd690a13d8bea8f31e1d857d69ccd7057366e1f09d30e3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxRdRsNTePS54Xk12mt3sRZDWL6gfiJ5DmkwkNe3WJEvpf2_W9dCLp3nzeL-BeVl2TsklZZRdocOIrigJZQUhwI-yUQmEFLQBOD7Qp9kkhBUhKTetYcpGmZzbNW6CbTfS2bjP31B3KqY1N63PX327lEvrbIhW5c_YeenSiLvWf-V2kz-htipZcxllPnMyBGuS8cv3rMN1OMtOjHQBJ39znH3c3b7PHorFy_3j7GZRKKh4LHTNK8YYSERKTVk2pla6aoikoPkSJTdAkWrO6uQqpWvCaqgqpIY0GgjCOLsY7m59-91hiGLVdj69FQTlFZTNtASWUmRIKd-G4NGIrbdr6feCEtF3KYYuRd-l6LtMyPWA7KSL6DV--m6fxMH9f9CKQskb-AFi1X3z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863294235</pqid></control><display><type>article</type><title>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kusy, Maciej</creator><creatorcontrib>Kusy, Maciej</creatorcontrib><description>This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.</description><identifier>ISSN: 2300-1933</identifier><identifier>ISSN: 2081-8491</identifier><identifier>EISSN: 2300-1933</identifier><identifier>DOI: 10.1515/eletel-2015-0038</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>dimensionality reduction ; feature extraction ; feature selection ; prediction ability ; principal component analysis ; probabilistic neural network ; random forest ; single decision tree</subject><ispartof>International Journal of Electronics and Telecommunications, 2015-09, Vol.61 (3), p.289-300</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d7865553aee11f229f7cd690a13d8bea8f31e1d857d69ccd7057366e1f09d30e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27915,27916</link.rule.ids></links><search><creatorcontrib>Kusy, Maciej</creatorcontrib><title>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</title><title>International Journal of Electronics and Telecommunications</title><description>This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.</description><subject>dimensionality reduction</subject><subject>feature extraction</subject><subject>feature selection</subject><subject>prediction ability</subject><subject>principal component analysis</subject><subject>probabilistic neural network</subject><subject>random forest</subject><subject>single decision tree</subject><issn>2300-1933</issn><issn>2081-8491</issn><issn>2300-1933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1LAzEQxRdRsNTePS54Xk12mt3sRZDWL6gfiJ5DmkwkNe3WJEvpf2_W9dCLp3nzeL-BeVl2TsklZZRdocOIrigJZQUhwI-yUQmEFLQBOD7Qp9kkhBUhKTetYcpGmZzbNW6CbTfS2bjP31B3KqY1N63PX327lEvrbIhW5c_YeenSiLvWf-V2kz-htipZcxllPnMyBGuS8cv3rMN1OMtOjHQBJ39znH3c3b7PHorFy_3j7GZRKKh4LHTNK8YYSERKTVk2pla6aoikoPkSJTdAkWrO6uQqpWvCaqgqpIY0GgjCOLsY7m59-91hiGLVdj69FQTlFZTNtASWUmRIKd-G4NGIrbdr6feCEtF3KYYuRd-l6LtMyPWA7KSL6DV--m6fxMH9f9CKQskb-AFi1X3z</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Kusy, Maciej</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20150901</creationdate><title>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</title><author>Kusy, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d7865553aee11f229f7cd690a13d8bea8f31e1d857d69ccd7057366e1f09d30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>dimensionality reduction</topic><topic>feature extraction</topic><topic>feature selection</topic><topic>prediction ability</topic><topic>principal component analysis</topic><topic>probabilistic neural network</topic><topic>random forest</topic><topic>single decision tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusy, Maciej</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International Journal of Electronics and Telecommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusy, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems</atitle><jtitle>International Journal of Electronics and Telecommunications</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>61</volume><issue>3</issue><spage>289</spage><epage>300</epage><pages>289-300</pages><issn>2300-1933</issn><issn>2081-8491</issn><eissn>2300-1933</eissn><abstract>This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/eletel-2015-0038</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-1933 |
ispartof | International Journal of Electronics and Telecommunications, 2015-09, Vol.61 (3), p.289-300 |
issn | 2300-1933 2081-8491 2300-1933 |
language | eng |
recordid | cdi_proquest_journals_1863294235 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | dimensionality reduction feature extraction feature selection prediction ability principal component analysis probabilistic neural network random forest single decision tree |
title | Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20Reduction%20for%20Probabilistic%20Neural%20Network%20in%20Medical%20Data%20Classification%20Problems&rft.jtitle=International%20Journal%20of%20Electronics%20and%20Telecommunications&rft.au=Kusy,%20Maciej&rft.date=2015-09-01&rft.volume=61&rft.issue=3&rft.spage=289&rft.epage=300&rft.pages=289-300&rft.issn=2300-1933&rft.eissn=2300-1933&rft_id=info:doi/10.1515/eletel-2015-0038&rft_dat=%3Cproquest_cross%3E4311653581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863294235&rft_id=info:pmid/&rfr_iscdi=true |