Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems
This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a...
Gespeichert in:
Veröffentlicht in: | International Journal of Electronics and Telecommunications 2015-09, Vol.61 (3), p.289-300 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure. |
---|---|
ISSN: | 2300-1933 2081-8491 2300-1933 |
DOI: | 10.1515/eletel-2015-0038 |