Some Finsler spaces with homogeneous geodesics
A geodesic in a homogeneous Finsler space (G/H,F) is called a homogeneous geodesic if it is an orbit of a one‐parameter subgroup of G. A homogeneous Finsler space (G/H,F) is called Finsler g.o. space if its all geodesics are homogeneous. Recently, the author studied Finsler g.o. spaces and generaliz...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2017-02, Vol.290 (2-3), p.474-481 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A geodesic in a homogeneous Finsler space (G/H,F) is called a homogeneous geodesic if it is an orbit of a one‐parameter subgroup of G. A homogeneous Finsler space (G/H,F) is called Finsler g.o. space if its all geodesics are homogeneous. Recently, the author studied Finsler g.o. spaces and generalized some geometric results on Riemannian g.o. spaces to the Finslerian setting. In the present paper, we investigate homogeneous geodesics in homogeneous (α,β) spaces, and obtain the sufficient and necessary condition for an (α,β) space to be a g.o. space. As an application, we get a series of new examples of Finsler g.o. spaces. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201500326 |