Write-Induced Head Contamination in Heat-Assisted Magnetic Recording

One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2017-02, Vol.53 (2), p.1-7
Hauptverfasser: Kiely, James D., Jones, Paul M., Yang Yang, Brand, John L., Anaya-Dufresne, Manuel, Fletcher, Patrick C., Zavaliche, Florin, Toivola, Yvete, Duda, John C., Johnson, Michael T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation model with shear forces suggests a flow of lubricant on the head may precipitate contamination. The contamination is observed to grow in the head-media gap until it contacts the media surface, at which point an additional material pickup mechanism can be activated. Evidence of contact-induced transfer and a chemical reaction of the contamination is presented, and the impacts of contamination on head temperatures and thermal gradient is presented. Depending on the contamination properties, head temperatures may be increased substantially, leading to increased reliability risk. Consistent with previous analyses, we find that contamination may increase media thermal gradient.
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2016.2618842