ESPRIT-Hilbert-Based Audio Tampering Detection With SVM Classifier for Forensic Analysis via Electrical Network Frequency

Audio authentication is a critical task in multimedia forensics demanding robust methods to detect and identify tampered audio recordings. In this paper, a new technique to detect adulterations in audio recordings is proposed by exploiting abnormal variations in the electrical network frequency (ENF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2017-04, Vol.12 (4), p.853-864
Hauptverfasser: Gil Innocencio Reis, Paulo Max, Carvalho Lustosa da Costa, Joao Paulo, Kehrle Miranda, Ricardo, Del Galdo, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Audio authentication is a critical task in multimedia forensics demanding robust methods to detect and identify tampered audio recordings. In this paper, a new technique to detect adulterations in audio recordings is proposed by exploiting abnormal variations in the electrical network frequency (ENF) signal eventually embedded in a questioned audio recording. These abnormal variations are caused by abrupt phase discontinuities due to insertions and suppressions of audio snippets during the tampering task. First, we propose an ESPRIT-Hilbert ENF estimator in conjunction with an outlier detector based on the sample kurtosis of the estimated ENF. Next, we use the computed kurtosis as an input for a support vector machine classifier to indicate the presence of tampering. The proposed scheme, herein designated as SPHINS, significantly outperforms related previous tampering detection approaches in the conducted tests. We validate our results using the Carioca 1 corpus with 100 unedited authorized audio recordings of phone calls.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2016.2636095