Classification of Cyclic Steiner Quadruple Systems

The problem of classifying cyclic Steiner quadruple systems (CSQSs) is considered. A computational approach shows that the number of isomorphism classes of such designs with orders 26 and 28 is 52,170 and 1,028,387, respectively. It is further shown that CSQSs of order 2p, where p is a prime, are is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2017-03, Vol.25 (3), p.103-121
Hauptverfasser: Chang, Yanxun, Fan, Bingli, Feng, Tao, Holt, Derek F., Östergård, Patric R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of classifying cyclic Steiner quadruple systems (CSQSs) is considered. A computational approach shows that the number of isomorphism classes of such designs with orders 26 and 28 is 52,170 and 1,028,387, respectively. It is further shown that CSQSs of order 2p, where p is a prime, are isomorphic iff they are multiplier equivalent. Moreover, no CSQSs of order less than or equal to 38 are isomorphic but not multiplier equivalent.
ISSN:1063-8539
1520-6610
DOI:10.1002/jcd.21530