Medium Optimization and Fermentation Kinetics for [kappa]-Carrageenase Production by Thalassospira sp. Fjfst-332

Effective degradation of [kappa]-carrageenan by isolated Thalassospira sp. fjfst-332 is reported for the first time in this paper. It was identified by 16S rDNA sequencing and morphological observation using Transmission Electron Microscopy (TEM). Based on a Plackett-Burman design for significant va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2016-11, Vol.21 (11), p.1479
Hauptverfasser: Guo, Juanjuan, Zhang, Longtao, Lu, Xu, Zeng, Shaoxiao, Zhang, Yi, Xu, Hui, Zheng, Baodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective degradation of [kappa]-carrageenan by isolated Thalassospira sp. fjfst-332 is reported for the first time in this paper. It was identified by 16S rDNA sequencing and morphological observation using Transmission Electron Microscopy (TEM). Based on a Plackett-Burman design for significant variables, Box-Behnken experimental design and response surface methodology were used to optimize the culture conditions. Through statistical optimization, the optimum medium components were determined as follows: 2.0 g/L [kappa]-carrageenan, 1.0 g/L yeast extract, 1.0 g/L FOS, 20.0 g/L NaCl, 2.0 g/L NaNO3, 0.5 g/L MgSO4*7H2O, 0.1 g/L K2HPO4, and 0.1 g/L CaCl2. The highest activity exhibited by Thalassospira sp. fjfst-332 was 267 U/mL, which makes it the most vigorous wild bacterium for [kappa]-carrageenan production. In order to guide scaled-up production, two empirical models-the logistic equation and Luedeking-Piretequation-were proposed to predict the strain growth and enzyme production, respectively. Furthermore, we report the fermentation kinetics and every empirical equation of the coefficients (α, β, X0, Xm and μm) for the two models, which could be used to design and optimize industrial processes.
ISSN:1420-3049
DOI:10.3390/molecules21111479