A Ferrite LTCC-Based Monolithic SIW Phased Antenna Array

In this paper, we present a novel configuration for realizing monolithic substrate integrated waveguide (SIW)-based phased antenna arrays using Ferrite low-temperature cofired ceramic (LTCC) technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2017-01, Vol.65 (1), p.196-205
Hauptverfasser: Nafe, Ahmed, Ghaffar, Farhan A., Farooqui, Muhammad Fahad, Shamim, Atif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a novel configuration for realizing monolithic substrate integrated waveguide (SIW)-based phased antenna arrays using Ferrite low-temperature cofired ceramic (LTCC) technology. Unlike the current common schemes for realizing SIW phased arrays that rely on surface-mount component (p-i-n diodes, etc.) for controlling the phase of the individual antenna elements, here the phase is tuned by biasing of the ferrite filling of the SIW. This approach eliminates the need for mounting of any additional RF components and enables seamless monolithic integration of phase shifters and antennas in SIW technology. As a proof of concept, a two-element slotted SIW-based phased array is designed, fabricated, and measured. The prototype exhibits a gain of 4.9 dBi at 13.2 GHz and a maximum E-plane beam-scanning of ±28° using external windings for biasing the phase shifters. Moreover, the array can achieve a maximum beam-scanning of ±19° when biased with small windings that are embedded in the package. This demonstration marks the first time a fully monolithic SIW-based phased array is realized in Ferrite LTCC technology and paves the way for future larger size implementations.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2016.2630502