The Brightness Temperature of the Quiet Solar Chromosphere at 2.6 mm

The absolute brightness temperature of the Sun at millimeter wavelengths is an important diagnostic of the solar chromosphere. Because the Sun is so bright, measurement of this property usually involves the operation of telescopes under extreme conditions and requires a rigorous performance assessme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2017, Vol.292 (1), p.1, Article 22
Hauptverfasser: Iwai, Kazumasa, Shimojo, Masumi, Asayama, Shinichiro, Minamidani, Tetsuhiro, White, Stephen, Bastian, Timothy, Saito, Masao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The absolute brightness temperature of the Sun at millimeter wavelengths is an important diagnostic of the solar chromosphere. Because the Sun is so bright, measurement of this property usually involves the operation of telescopes under extreme conditions and requires a rigorous performance assessment of the telescope. In this study, we establish solar observation and calibration techniques at 2.6 mm wavelength for the Nobeyama 45 m telescope and accurately derive the absolute solar brightness temperature. We tune the superconductor–insulator–superconductor (SIS) receiver by inducing different bias voltages onto the SIS mixer to prevent saturation. Then, we examine the linearity of the receiver system by comparing outputs derived from different tuning conditions. Furthermore, we measure the lunar filled beam efficiency of the telescope using the New Moon, and then derive the absolute brightness temperature of the Sun. The derived solar brightness temperature is 7700 ± 310 K at 115 GHz. The telescope beam pattern is modeled as a summation of three Gaussian functions and derived using the solar limb. The real shape of the Sun is determined via deconvolution of the beam pattern from the observed map. Such well-calibrated single-dish observations are important for high-resolution chromospheric studies because they provide the absolute temperature scale that is lacking from interferometer observations.
ISSN:0038-0938
1573-093X
DOI:10.1007/s11207-016-1044-5