The Dispersion of Nearest-Neighbor Decoding for Additive Non-Gaussian Channels
We study the second-order asymptotics of information transmission using random Gaussian codebooks and nearest neighbor decoding over a power-limited stationary memoryless additive non-Gaussian noise channel. We show that the dispersion term depends on the non-Gaussian noise only through its second a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2017-01, Vol.63 (1), p.81-92 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the second-order asymptotics of information transmission using random Gaussian codebooks and nearest neighbor decoding over a power-limited stationary memoryless additive non-Gaussian noise channel. We show that the dispersion term depends on the non-Gaussian noise only through its second and fourth moments, thus complementing the capacity result (Lapidoth, 1996), which depends only on the second moment. Furthermore, we characterize the second-order asymptotics of point-to-point codes over K-sender interference networks with non-Gaussian additive noise. Specifically, we assume that each user's codebook is Gaussian and that NN decoding is employed, i.e., that interference from the K -1 unintended users (Gaussian interfering signals) is treated as noise at each decoder. We show that while the first-order term in the asymptotic expansion of the maximum number of messages depends on the power of the interfering codewords only through their sum, this does not hold for the second-order term. |
---|---|
ISSN: | 0018-9448 1557-9654 1557-9654 |
DOI: | 10.1109/TIT.2016.2620161 |