A Comparative Study between Clustering Methods in Educational Data Mining

This paper aims to describe the analysis of data from the Moodle's database of a beginner class in Distance Education of a Federal University using distinct educational data mining clustering methods. We carried out clustering using hierarchical and non-hierarchical methods in different groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2016-08, Vol.14 (8), p.3755-3761
Hauptverfasser: Luis Cavalcanti Ramos, Jorge, Euller Dantas e Silva, Ricardo, Carlos Sedraz Silva, Joao, Lins Rodrigues, Rodrigo, Sandro Gomes, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to describe the analysis of data from the Moodle's database of a beginner class in Distance Education of a Federal University using distinct educational data mining clustering methods. We carried out clustering using hierarchical and non-hierarchical methods in different groups of students, according to their interaction and performance characteristics. In the analysis, it was possible to perceive the groups obtained, a similarity between the results of each method used, confirming the acquired knowledge from the clustering and demonstrating that the choice of method in this study had little influence on the knowledge obtained from interactions and students performance on the course.
ISSN:1548-0992
1548-0992
DOI:10.1109/TLA.2016.7786360