STAMP: Enabling Privacy-Preserving Location Proofs for Mobile Users

Location-based services are quickly becoming immensely popular. In addition to services based on users' current location, many potential services rely on users' location history, or their spatial-temporal provenance. Malicious users may lie about their spatial-temporal provenance without a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2016-12, Vol.24 (6), p.3276-3289
Hauptverfasser: Xinlei Wang, Pande, Amit, Zhu, Jindan, Mohapatra, Prasant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Location-based services are quickly becoming immensely popular. In addition to services based on users' current location, many potential services rely on users' location history, or their spatial-temporal provenance. Malicious users may lie about their spatial-temporal provenance without a carefully designed security system for users to prove their past locations. In this paper, we present the Spatial-Temporal provenance Assurance with Mutual Proofs (STAMP) scheme. STAMP is designed for ad-hoc mobile users generating location proofs for each other in a distributed setting. However, it can easily accommodate trusted mobile users and wireless access points. STAMP ensures the integrity and non-transferability of the location proofs and protects users' privacy. A semi-trusted Certification Authority is used to distribute cryptographic keys as well as guard users against collusion by a light-weight entropy-based trust evaluation approach. Our prototype implementation on the Android platform shows that STAMP is low-cost in terms of computational and storage resources. Extensive simulation experiments show that our entropy-based trust model is able to achieve high ( > 0.9) collusion detection accuracy.
ISSN:1063-6692
1558-2566
DOI:10.1109/TNET.2016.2515119