Enhancing LTE with Cloud-RAN and Load-Controlled Parasitic Antenna Arrays
Cloud radio access network systems, consisting of remote radio heads densely distributed in a coverage area and connected by optical fibers to a cloud infrastructure with large computational capabilities, have the potential to meet the ambitious objectives of next generation mobile networks. Actual...
Gespeichert in:
Veröffentlicht in: | IEEE communications magazine 2016-12, Vol.54 (12), p.183-191 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cloud radio access network systems, consisting of remote radio heads densely distributed in a coverage area and connected by optical fibers to a cloud infrastructure with large computational capabilities, have the potential to meet the ambitious objectives of next generation mobile networks. Actual implementations of C-RANs tackle fundamental technical and economic challenges. In this article, we present an end-to-end solution for practically implementable C-RANs by providing innovative solutions to key issues such as the design of cost-effective hardware and power-effective signals for RRHs, efficient design and distribution of data and control traffic for coordinated communications, and conception of a flexible and elastic architecture supporting dynamic allocation of both the densely distributed RRHs and the centralized processing resources in the cloud to create virtual base stations. More specifically, we propose a novel antenna array architecture called load-controlled parasitic antenna array (LCPAA) where multiple antennas are fed by a single RF chain. Energy- and spectral-efficient modulation as well as signaling schemes that are easy to implement are also provided. Additionally, the design presented for the fronthaul enables flexibility and elasticity in resource allocation to support BS virtualization. A layered design of information control for the proposed end-to-end solution is presented. The feasibility and effectiveness of such an LCPAA-enabled C-RAN system setup has been validated through an over-the-air demonstration. |
---|---|
ISSN: | 0163-6804 1558-1896 |
DOI: | 10.1109/MCOM.2016.1500687CM |