Three-dimensional organization of the cytoplasmic neuroglobin-immunopositive structures in the rat medulla oblongata neurons

Neuroglobin is an iron-containing protein, most abundant in the vertebrate nervous system. Since neuroglobin is able to bind oxygen reversibly owing to the heme prosthetic group, it was believed that its function is an intercellular transport of oxygen in the nervous system and accumulation of oxyge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Moscow). Supplement series A, Membrane and cell biology Membrane and cell biology, 2016-10, Vol.10 (4), p.333-337
Hauptverfasser: Kirik, O. V., Grigorev, I. P., Alekseeva, O. S., Korzhevskii, D. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuroglobin is an iron-containing protein, most abundant in the vertebrate nervous system. Since neuroglobin is able to bind oxygen reversibly owing to the heme prosthetic group, it was believed that its function is an intercellular transport of oxygen in the nervous system and accumulation of oxygen for energy supply of cells in hypoxic conditions. In this work, a three-dimensional reconstruction of the neuroglobin distribution in large neurons of the rat medulla oblongata was carried out by means of immunocytochemistry and confocal laser microscopy. Positive neuroglobin immunocytochemical reaction was observed mainly in the perinuclear areas of large nerve cells exhibiting a discrete staining of the cytoplasm. Examination under the microscope at a high magnification revealed some neuroglobin-immunopositive granules, ring-like objects 1–2 μm in diameter, as well as linear and branched structures in neuronal cytoplasm and, occasionally, in the proximal segments of neuronal processes. Three-dimensional reconstruction of the neuroglobin-immunopositive structures showed that they mainly have the form of continuous lines and curves interlaced in some sites, about 1.0–1.5 μm thick, forming a complex network in the cytoplasm. The neuroglobin-immunopositive complexes found for the first time in neuronal cytoplasm are not identical to any known cytoplasmic compartments of nerve cells, but the diameter of their elements, as well as the shape and location suggest a possible link of neuroglobin with a mitochondrial network.
ISSN:1990-7478
1990-7494
DOI:10.1134/S1990747816030065