Stochastic Gradient-Push for Strongly Convex Functions on Time-Varying Directed Graphs

We investigate the convergence rate of the recently proposed subgradient-push method for distributed optimization over time-varying directed graphs. The subgradient-push method can be implemented in a distributed way without requiring knowledge of either the number of agents or the graph sequence; e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2016-12, Vol.61 (12), p.3936-3947
Hauptverfasser: Nedic, Angelia, Olshevsky, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the convergence rate of the recently proposed subgradient-push method for distributed optimization over time-varying directed graphs. The subgradient-push method can be implemented in a distributed way without requiring knowledge of either the number of agents or the graph sequence; each node is only required to know its out-degree at each time. Our main result is a convergence rate of O((ln t)/t) for strongly convex functions with Lipschitz gradients even if only stochastic gradient samples are available; this is asymptotically faster than the O((ln t)/√t) rate previously known for (general) convex functions.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2016.2529285