MINIMAX OPTIMAL RATES OF ESTIMATION IN HIGH DIMENSIONAL ADDITIVE MODELS

We establish minimax optimal rates of convergence for estimation in a high dimensional additive model assuming that it is approximately sparse. Our results reveal a behavior universal to this class of high dimensional problems. In the sparse regime when the components are sufficiently smooth or the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2016-12, Vol.44 (6), p.2564-2593
Hauptverfasser: Yuan, Ming, Zhou, Ding-Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish minimax optimal rates of convergence for estimation in a high dimensional additive model assuming that it is approximately sparse. Our results reveal a behavior universal to this class of high dimensional problems. In the sparse regime when the components are sufficiently smooth or the dimensionality is sufficiently large, the optimal rates are identical to those for high dimensional linear regression and, therefore, there is no additional cost to entertain a nonparametric model. Otherwise, in the so-called smooth regime, the rates coincide with the optimal rates for estimating a univariate function and, therefore, they are immune to the "curse of dimensionality."
ISSN:0090-5364
2168-8966
DOI:10.1214/15-AOS1422