Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators
In this paper, we will propose a Durrmeyer variant of q‐Bernstein–Schurer operators. A Bohman–Korovkin‐type approximation theorem of these operators is considered. The rate of convergence by using the first modulus of smoothness is computed. The statistical approximation of these operators is also s...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2016-12, Vol.39 (18), p.5636-5650 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we will propose a Durrmeyer variant of q‐Bernstein–Schurer operators. A Bohman–Korovkin‐type approximation theorem of these operators is considered. The rate of convergence by using the first modulus of smoothness is computed. The statistical approximation of these operators is also studied. Copyright © 2016 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3949 |