Investigation of Carrier Transport Mechanism in High Mobility ZnON Thin-Film Transistors

In this letter, the carrier transport mechanism in a high-mobility zinc oxynitride (ZnON) thin-film transistor (TFT) is investigated by analyzing the gate bias and temperature dependence of conductance and intrinsic field-effect mobility (μ FEi ) in the subthreshold and above-threshold regions, resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2016-12, Vol.37 (12), p.1570-1573
Hauptverfasser: Jeong, Chan-Yong, Kim, Hee-Joong, Kim, Dae-Hwan, Kim, Hyun-Suk, Kim, Tae Sang, Seon, Jong-Baek, Lee, Sunhee, Kim, Dae Hwan, Kwon, Hyuck-In
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1573
container_issue 12
container_start_page 1570
container_title IEEE electron device letters
container_volume 37
creator Jeong, Chan-Yong
Kim, Hee-Joong
Kim, Dae-Hwan
Kim, Hyun-Suk
Kim, Tae Sang
Seon, Jong-Baek
Lee, Sunhee
Kim, Dae Hwan
Kwon, Hyuck-In
description In this letter, the carrier transport mechanism in a high-mobility zinc oxynitride (ZnON) thin-film transistor (TFT) is investigated by analyzing the gate bias and temperature dependence of conductance and intrinsic field-effect mobility (μ FEi ) in the subthreshold and above-threshold regions, respectively. The measured drain currents increase with a temperature and show a thermally activated Arrhenius-like behavior in the subthreshold region. The experimental results are well explained using a Meyer-Neldel rule, which suggests that the trap-limited conduction is the dominant carrier transport mechanism in the ZnON TFT in the subthreshold region. The carrier transport mechanism in the ZnON TFT in the above-threshold region is investigated by examining the gate overdrive voltage (V OV ) and temperature dependence of μ FEi . μ FEi extracted from the ZnON TFT decreases with an increase in V OV and temperature, which suggests that the phonon scattering is the most probable mechanism limiting μ FEi in the ZnON TFT in the above-threshold region.
doi_str_mv 10.1109/LED.2016.2619684
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1844102619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7604108</ieee_id><sourcerecordid>1844102619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4855b6d88815152b1f5c7aa2b2e950e764509ef91f4987c456bcdde4649f0b983</originalsourceid><addsrcrecordid>eNo9kMFOAjEURRujiYjuTdw0cT3YN9N22qVBEBKQDSbGTdMZWiiBFtvBhL93yBBXb3PuvXkHoUcgAwAiX2ajt0FOgA9yDpILeoV6wJjICOPFNeqRkkJWAOG36C6lLSFAaUl76Gvqf01q3Fo3LngcLB7qGJ2JeBm1T4cQGzw39UZ7l_bYeTxx6w2eh8rtXHPC337xgZcb57Ox2-27jEtNiOke3Vi9S-bhcvvoczxaDifZbPE-Hb7OsjqX0GRUMFbxlRACGLC8AsvqUuu8yo1kxJScMiKNlWCpFGVNGa_q1cpQTqUllRRFHz13vYcYfo7tK2objtG3kwoEpUDOPlqKdFQdQ0rRWHWIbq_jSQFRZ3-q9afO_tTFXxt56iLOGPOPl5y0naL4A6m-awg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844102619</pqid></control><display><type>article</type><title>Investigation of Carrier Transport Mechanism in High Mobility ZnON Thin-Film Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>Jeong, Chan-Yong ; Kim, Hee-Joong ; Kim, Dae-Hwan ; Kim, Hyun-Suk ; Kim, Tae Sang ; Seon, Jong-Baek ; Lee, Sunhee ; Kim, Dae Hwan ; Kwon, Hyuck-In</creator><creatorcontrib>Jeong, Chan-Yong ; Kim, Hee-Joong ; Kim, Dae-Hwan ; Kim, Hyun-Suk ; Kim, Tae Sang ; Seon, Jong-Baek ; Lee, Sunhee ; Kim, Dae Hwan ; Kwon, Hyuck-In</creatorcontrib><description>In this letter, the carrier transport mechanism in a high-mobility zinc oxynitride (ZnON) thin-film transistor (TFT) is investigated by analyzing the gate bias and temperature dependence of conductance and intrinsic field-effect mobility (μ FEi ) in the subthreshold and above-threshold regions, respectively. The measured drain currents increase with a temperature and show a thermally activated Arrhenius-like behavior in the subthreshold region. The experimental results are well explained using a Meyer-Neldel rule, which suggests that the trap-limited conduction is the dominant carrier transport mechanism in the ZnON TFT in the subthreshold region. The carrier transport mechanism in the ZnON TFT in the above-threshold region is investigated by examining the gate overdrive voltage (V OV ) and temperature dependence of μ FEi . μ FEi extracted from the ZnON TFT decreases with an increase in V OV and temperature, which suggests that the phonon scattering is the most probable mechanism limiting μ FEi in the ZnON TFT in the above-threshold region.</description><identifier>ISSN: 0741-3106</identifier><identifier>EISSN: 1558-0563</identifier><identifier>DOI: 10.1109/LED.2016.2619684</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carrier transport ; Carrier transport mechanism ; Carrier transport mechanisms ; Investigations ; Logic gates ; Meyer-Neldel rule ; phonon scattering ; Phonons ; Scattering parameters ; Semiconductor devices ; Temperature dependence ; Temperature measurement ; Thin film transistors ; trap-limited conduction ; zinc oxynitride thin-film transistor</subject><ispartof>IEEE electron device letters, 2016-12, Vol.37 (12), p.1570-1573</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4855b6d88815152b1f5c7aa2b2e950e764509ef91f4987c456bcdde4649f0b983</citedby><cites>FETCH-LOGICAL-c291t-4855b6d88815152b1f5c7aa2b2e950e764509ef91f4987c456bcdde4649f0b983</cites><orcidid>0000-0003-2567-4012 ; 0000-0002-4332-051X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7604108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7604108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jeong, Chan-Yong</creatorcontrib><creatorcontrib>Kim, Hee-Joong</creatorcontrib><creatorcontrib>Kim, Dae-Hwan</creatorcontrib><creatorcontrib>Kim, Hyun-Suk</creatorcontrib><creatorcontrib>Kim, Tae Sang</creatorcontrib><creatorcontrib>Seon, Jong-Baek</creatorcontrib><creatorcontrib>Lee, Sunhee</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Kwon, Hyuck-In</creatorcontrib><title>Investigation of Carrier Transport Mechanism in High Mobility ZnON Thin-Film Transistors</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description>In this letter, the carrier transport mechanism in a high-mobility zinc oxynitride (ZnON) thin-film transistor (TFT) is investigated by analyzing the gate bias and temperature dependence of conductance and intrinsic field-effect mobility (μ FEi ) in the subthreshold and above-threshold regions, respectively. The measured drain currents increase with a temperature and show a thermally activated Arrhenius-like behavior in the subthreshold region. The experimental results are well explained using a Meyer-Neldel rule, which suggests that the trap-limited conduction is the dominant carrier transport mechanism in the ZnON TFT in the subthreshold region. The carrier transport mechanism in the ZnON TFT in the above-threshold region is investigated by examining the gate overdrive voltage (V OV ) and temperature dependence of μ FEi . μ FEi extracted from the ZnON TFT decreases with an increase in V OV and temperature, which suggests that the phonon scattering is the most probable mechanism limiting μ FEi in the ZnON TFT in the above-threshold region.</description><subject>Carrier transport</subject><subject>Carrier transport mechanism</subject><subject>Carrier transport mechanisms</subject><subject>Investigations</subject><subject>Logic gates</subject><subject>Meyer-Neldel rule</subject><subject>phonon scattering</subject><subject>Phonons</subject><subject>Scattering parameters</subject><subject>Semiconductor devices</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>Thin film transistors</subject><subject>trap-limited conduction</subject><subject>zinc oxynitride thin-film transistor</subject><issn>0741-3106</issn><issn>1558-0563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEURRujiYjuTdw0cT3YN9N22qVBEBKQDSbGTdMZWiiBFtvBhL93yBBXb3PuvXkHoUcgAwAiX2ajt0FOgA9yDpILeoV6wJjICOPFNeqRkkJWAOG36C6lLSFAaUl76Gvqf01q3Fo3LngcLB7qGJ2JeBm1T4cQGzw39UZ7l_bYeTxx6w2eh8rtXHPC337xgZcb57Ox2-27jEtNiOke3Vi9S-bhcvvoczxaDifZbPE-Hb7OsjqX0GRUMFbxlRACGLC8AsvqUuu8yo1kxJScMiKNlWCpFGVNGa_q1cpQTqUllRRFHz13vYcYfo7tK2objtG3kwoEpUDOPlqKdFQdQ0rRWHWIbq_jSQFRZ3-q9afO_tTFXxt56iLOGPOPl5y0naL4A6m-awg</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Jeong, Chan-Yong</creator><creator>Kim, Hee-Joong</creator><creator>Kim, Dae-Hwan</creator><creator>Kim, Hyun-Suk</creator><creator>Kim, Tae Sang</creator><creator>Seon, Jong-Baek</creator><creator>Lee, Sunhee</creator><creator>Kim, Dae Hwan</creator><creator>Kwon, Hyuck-In</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2567-4012</orcidid><orcidid>https://orcid.org/0000-0002-4332-051X</orcidid></search><sort><creationdate>201612</creationdate><title>Investigation of Carrier Transport Mechanism in High Mobility ZnON Thin-Film Transistors</title><author>Jeong, Chan-Yong ; Kim, Hee-Joong ; Kim, Dae-Hwan ; Kim, Hyun-Suk ; Kim, Tae Sang ; Seon, Jong-Baek ; Lee, Sunhee ; Kim, Dae Hwan ; Kwon, Hyuck-In</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4855b6d88815152b1f5c7aa2b2e950e764509ef91f4987c456bcdde4649f0b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carrier transport</topic><topic>Carrier transport mechanism</topic><topic>Carrier transport mechanisms</topic><topic>Investigations</topic><topic>Logic gates</topic><topic>Meyer-Neldel rule</topic><topic>phonon scattering</topic><topic>Phonons</topic><topic>Scattering parameters</topic><topic>Semiconductor devices</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>Thin film transistors</topic><topic>trap-limited conduction</topic><topic>zinc oxynitride thin-film transistor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Chan-Yong</creatorcontrib><creatorcontrib>Kim, Hee-Joong</creatorcontrib><creatorcontrib>Kim, Dae-Hwan</creatorcontrib><creatorcontrib>Kim, Hyun-Suk</creatorcontrib><creatorcontrib>Kim, Tae Sang</creatorcontrib><creatorcontrib>Seon, Jong-Baek</creatorcontrib><creatorcontrib>Lee, Sunhee</creatorcontrib><creatorcontrib>Kim, Dae Hwan</creatorcontrib><creatorcontrib>Kwon, Hyuck-In</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jeong, Chan-Yong</au><au>Kim, Hee-Joong</au><au>Kim, Dae-Hwan</au><au>Kim, Hyun-Suk</au><au>Kim, Tae Sang</au><au>Seon, Jong-Baek</au><au>Lee, Sunhee</au><au>Kim, Dae Hwan</au><au>Kwon, Hyuck-In</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Carrier Transport Mechanism in High Mobility ZnON Thin-Film Transistors</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2016-12</date><risdate>2016</risdate><volume>37</volume><issue>12</issue><spage>1570</spage><epage>1573</epage><pages>1570-1573</pages><issn>0741-3106</issn><eissn>1558-0563</eissn><coden>EDLEDZ</coden><abstract>In this letter, the carrier transport mechanism in a high-mobility zinc oxynitride (ZnON) thin-film transistor (TFT) is investigated by analyzing the gate bias and temperature dependence of conductance and intrinsic field-effect mobility (μ FEi ) in the subthreshold and above-threshold regions, respectively. The measured drain currents increase with a temperature and show a thermally activated Arrhenius-like behavior in the subthreshold region. The experimental results are well explained using a Meyer-Neldel rule, which suggests that the trap-limited conduction is the dominant carrier transport mechanism in the ZnON TFT in the subthreshold region. The carrier transport mechanism in the ZnON TFT in the above-threshold region is investigated by examining the gate overdrive voltage (V OV ) and temperature dependence of μ FEi . μ FEi extracted from the ZnON TFT decreases with an increase in V OV and temperature, which suggests that the phonon scattering is the most probable mechanism limiting μ FEi in the ZnON TFT in the above-threshold region.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LED.2016.2619684</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2567-4012</orcidid><orcidid>https://orcid.org/0000-0002-4332-051X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2016-12, Vol.37 (12), p.1570-1573
issn 0741-3106
1558-0563
language eng
recordid cdi_proquest_journals_1844102619
source IEEE Electronic Library (IEL)
subjects Carrier transport
Carrier transport mechanism
Carrier transport mechanisms
Investigations
Logic gates
Meyer-Neldel rule
phonon scattering
Phonons
Scattering parameters
Semiconductor devices
Temperature dependence
Temperature measurement
Thin film transistors
trap-limited conduction
zinc oxynitride thin-film transistor
title Investigation of Carrier Transport Mechanism in High Mobility ZnON Thin-Film Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Carrier%20Transport%20Mechanism%20in%20High%20Mobility%20ZnON%20Thin-Film%20Transistors&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Jeong,%20Chan-Yong&rft.date=2016-12&rft.volume=37&rft.issue=12&rft.spage=1570&rft.epage=1573&rft.pages=1570-1573&rft.issn=0741-3106&rft.eissn=1558-0563&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2016.2619684&rft_dat=%3Cproquest_RIE%3E1844102619%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844102619&rft_id=info:pmid/&rft_ieee_id=7604108&rfr_iscdi=true