On Rényi Entropy Power Inequalities
This paper gives improved Rényi entropy power inequalities (R-EPIs). Consider a sum S n = Σ k=1 n X k of n independent continuous random vectors taking values on ℝ d , and let α ∈ [1, ∞]. An R-EPI provides a lower bound on the order-α Rényi entropy power of S n that, up to a multiplicative constan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-12, Vol.62 (12), p.6800-6815 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper gives improved Rényi entropy power inequalities (R-EPIs). Consider a sum S n = Σ k=1 n X k of n independent continuous random vectors taking values on ℝ d , and let α ∈ [1, ∞]. An R-EPI provides a lower bound on the order-α Rényi entropy power of S n that, up to a multiplicative constant (which may depend in general on n, α, d), is equal to the sum of the order-α Rényi entropy powers of the n random vectors {X k } k=1 n . For α = 1, the R-EPI coincides with the wellknown entropy power inequality by Shannon. The first improved R-EPI is obtained by tightening the recent R-EPI by Bobkov and Chistyakov, which relies on the sharpened Young's inequality. A further improvement of the R-EPI also relies on convex optimization and results on rank-one modification of a real-valued diagonal matrix. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2016.2616135 |