Bulk universality holds in measure for compactly supported measures

Let µ be a measure with compact support, with orthonormal polynomials { p n } and associated reproducing kernels { K n }. We show that bulk universality holds in measure in { ξ : µ′( ξ ) > 0}. More precisely, given ɛ, r > 0, the linear Lebesgue measure of the set { ξ : µ′( ξ ) > 0} and for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2012, Vol.116 (1), p.219-253
1. Verfasser: Lubinsky, Doron S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let µ be a measure with compact support, with orthonormal polynomials { p n } and associated reproducing kernels { K n }. We show that bulk universality holds in measure in { ξ : µ′( ξ ) > 0}. More precisely, given ɛ, r > 0, the linear Lebesgue measure of the set { ξ : µ′( ξ ) > 0} and for which approaches 0 as n → ∞. There are no local or global regularity conditions on the measure µ.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-012-0006-6