Some remarks on the Fefferman-Stein inequality

We investigate the Fefferman-Stein inequality related to a function f and the sharp maximal function f # on a Banach function space X . It is proved that this inequality is equivalent to a certain boundedness property of the Hardy-Littlewood maximal operator M . The latter property is shown to be se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2010-10, Vol.112 (1), p.329-349
1. Verfasser: Lerner, Andrei K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the Fefferman-Stein inequality related to a function f and the sharp maximal function f # on a Banach function space X . It is proved that this inequality is equivalent to a certain boundedness property of the Hardy-Littlewood maximal operator M . The latter property is shown to be self-improving. We apply our results in several directions. First, we show the existence of nontrivial spaces X for which the lower operator norm of M is equal to 1. Second, in the case when X is the weighted Lebesgue space L p (w), we obtain a new approach to the results of Sawyer and Yabuta concerning the C p condition.
ISSN:0021-7670
1565-8538
DOI:10.1007/s11854-010-0032-1