Some remarks on the Fefferman-Stein inequality
We investigate the Fefferman-Stein inequality related to a function f and the sharp maximal function f # on a Banach function space X . It is proved that this inequality is equivalent to a certain boundedness property of the Hardy-Littlewood maximal operator M . The latter property is shown to be se...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2010-10, Vol.112 (1), p.329-349 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the Fefferman-Stein inequality related to a function
f
and the sharp maximal function
f
#
on a Banach function space
X
. It is proved that this inequality is equivalent to a certain boundedness property of the Hardy-Littlewood maximal operator
M
. The latter property is shown to be self-improving. We apply our results in several directions. First, we show the existence of nontrivial spaces
X
for which the lower operator norm of
M
is equal to 1. Second, in the case when
X
is the weighted Lebesgue space
L
p
(w), we obtain a new approach to the results of Sawyer and Yabuta concerning the
C
p
condition. |
---|---|
ISSN: | 0021-7670 1565-8538 |
DOI: | 10.1007/s11854-010-0032-1 |