Cotton responses to different light–temperature regimes

A series of experiments investigating the interactive effects of light and temperature on vegetative growth, earliness, fruiting, yield and fibre properties in three cultivars of cotton, was undertaken in growth rooms. Two constant day/night temperature regimes with a difference of 4 °C (30/20 and 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of agricultural science 1998-11, Vol.131 (3), p.277-283
Hauptverfasser: ROUSSOPOULOS, D., LIAKATAS, A., WHITTINGTON, W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of experiments investigating the interactive effects of light and temperature on vegetative growth, earliness, fruiting, yield and fibre properties in three cultivars of cotton, was undertaken in growth rooms. Two constant day/night temperature regimes with a difference of 4 °C (30/20 and 26/16·5 °C) were used throughout the growing season in combination with two light intensities (75 and 52·5 W m−2). The results showed that significant interactions occurred for most of the characters studied. Although the development of leaf area was mainly temperature-dependent, plants at harvest had a larger leaf area when high temperature was combined with low rather than with high light intensity. Leaf area was least in the low temperature–low light regime. However, the plants grown under the high temperature–low light combination weighed the least. Variations in the number of nodes and internode length were largely dependent on temperature rather than light. Light did, however, affect the numbers of branches, sympodia and monopodia. The first two of these were highest in the high light–high temperature regime and the third in the low light–low temperature regime. All other characters, except time to certain developmental stages and fibre length, were reduced at the lower light intensity. Variation in temperature modified the light effect and vice versa, in a character-dependent manner. More specifically, square and boll dry weights, as well as seed cotton yield per plant, were highest in high light combined with low temperature, where the most and heaviest bolls were produced. But flower production was favoured by high light and high temperature, suggesting increased boll retention at low temperature, especially when combined with low light. Low temperature and high light also maximized lint percentage. Fibres were shortest in the high temperature–high light regime, where fibre strength, micronaire index and maturity ratio were at a maximum. However, the finest and the most uniform fibres were produced when high light was combined with low temperature. Cultivar differences were significant mainly in leaf area and dry matter production at flowering.
ISSN:0021-8596
1469-5146
DOI:10.1017/S0021859698005735