Outage Constrained Robust Beamforming for Secure Broadcasting Systems With Energy Harvesting
In this paper, we investigate simultaneous wireless information and power transfer systems for multiuser multiple-input single-output secure broadcasting channels. Considering imperfect channel state information, we introduce a robust secure beamforming design, where the transmit power is minimized...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2016-11, Vol.15 (11), p.7610-7620 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate simultaneous wireless information and power transfer systems for multiuser multiple-input single-output secure broadcasting channels. Considering imperfect channel state information, we introduce a robust secure beamforming design, where the transmit power is minimized subject to the secrecy rate outage probability constraint for legitimate users and the harvested energy outage probability constraint for energy harvesting receivers. The original problem is non-convex due to the presence of the probabilistic constraints. With the aid of Bernstein-type inequalities, we transform the outage constraints into the deterministic forms. Based on a successive convex approximation (SCA) method, we propose a low-complexity approach, which reformulates the original problem as a second-order cone programming problem. Also, we prove the convergence of the SCA-based iterative algorithm. Simulation shows that the proposed scheme outperforms the conventional method with lower complexity. |
---|---|
ISSN: | 1536-1276 1558-2248 |
DOI: | 10.1109/TWC.2016.2605102 |