Effects of oxidative stress reaction for the Eisenia fetida with exposure in Cd^sup 2
Earthworms are widely used in all kinds of pollutants as sensitive bio-indicator organisms because of their immediately oxidative stress response under the stress of heavy metal. However, there are a large number of indexes associated with the oxidative stress response. Finding out the key monitorin...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2016-11, Vol.23 (21), p.21883 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Earthworms are widely used in all kinds of pollutants as sensitive bio-indicator organisms because of their immediately oxidative stress response under the stress of heavy metal. However, there are a large number of indexes associated with the oxidative stress response. Finding out the key monitoring indexes in the stress process becomes a practical demand of the pollution monitoring and warning process. We studied two groups, the short-term test and the long-term test. The former one is for 10 days, taking out an earthworm every day. The latter test lasted 30 days, taking out an earthworm every 10 days. The Cd2+ concentration was set at 50, 100, 125, 250, and 500 mg kg-1. Post-clitellum segments of earthworms were chosen to determine superoxide enzyme (SOD), peroxidase (POD), glutathione peroxidase (GSH-Px), glutathione-S transferase (GST), catalase (CAT), vitamin E (VE), malondialdehyde (MDA), and acetylcholinesterase (AChE). The results showed that the main bio-indicators associating with oxidative stress reaction in short-term group were CAT, SOD, and POD. MDA could be used as a bio-indicator in the early and mid-term. VE was only the bio-indicator in the mid-term stress. While with the long-term test, the main bio-indicators associated with oxidative stress reaction were GSH-Px and MDA. The AChE activity was only suitable for oxidative stress response caused by heavy metal stress more than 30 days. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-016-7422-6 |