Keggin-type Polyoxometalates as Bidirectional Redox Mediators for Rechargeable Batteries

Keggin-type polyoxometalates (POMs), which possess multiple redox centers, were investigated as bidirectional redox mediators in rechargeable batteries. A series of POMs have been synthesized and employed in sulfur electrodes where neither the active material nor the discharge product were electrica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Denki kagaku oyobi kōgyō butsuri kagaku 2016/11/05, Vol.84(11), pp.882-886
Hauptverfasser: CHOI, Wonsung, IM, Dongmin, PARK, Min Sik, RYU, Young-Gyoon, HWANG, Seung Sik, KIM, Yong Su, KIM, Hyunjin, DOO, Seok-Gwang, CHANG, Hyuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Keggin-type polyoxometalates (POMs), which possess multiple redox centers, were investigated as bidirectional redox mediators in rechargeable batteries. A series of POMs have been synthesized and employed in sulfur electrodes where neither the active material nor the discharge product were electrically conductive. POMs were found to have multiple redox potentials covering the range of the equilibrium potentials of the redox reactions of sulfur, which consequently facilitated both charge and discharge reactions. In particular, [SiMo12O40]4− offered a large discharge capacity of 1270 mAh g−1 by accelerating the reduction of shorter, less soluble polysulfides, leading to a higher cycling performance. The mediator role was confirmed via an X-ray photoelectron spectroscopy study on the cycled cathodes. Density functional theory calculations showed that the redox potentials of POMs are tunable, allowing selective design of suitable POM molecules for specific battery electrodes.
ISSN:1344-3542
2186-2451
DOI:10.5796/electrochemistry.84.882